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NATURAL CONVECTION IN PARTIALLY COOLED
TILTED CAVITIES
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SUMMARY

Two-dimensional numerical simulations of laminar natural convection in a partially cooled, differentially
heated inclined cavities are performed. One of the cavity walls is entirely heated to a uniformly high
temperature (heat source) while the opposite wall is partially cooled to a lower temperature (heat sink).
The remaining walls are adiabatic. The tilt angle of the cavity is varied from 0° (heated from left) to
−90° (heated from top). The fast false implicit transient scheme (FITS) algorithm, developed earlier by
the same authors, is modified to solve the derived variables vorticity-streamfunction formulation. The
effects of aspect ratio (AR), sink–source ratio and tilt angle on the average Nusselt number are examined
through a parametric study; solutions are obtained for two Grashof numbers, 105 and 107. Flow patterns
and isotherms are used to investigate the heat transfer and fluid flow mechanisms inside the cavity.
© 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Natural convection in rectangular cavities has numerous engineering applications, among
which are electronic packages, solar collectors, thermal design of buildings, storage systems,
cooling of nuclear reactors, etc. Ostrach [1] comprehensively reviewed this subject. Most of the
early work dealt with differentially heated vertical cavities where one vertical side is at a high
isothermal temperature and the opposite side is at a low isothermal temperature. The
remaining sides of the cavity are adiabatic. Several investigators, e.g. Krane and Jessee [2],
Barakos et al. [3], Markatos and Pericleous [4] and Henkes et al. [5] have studied this cavity
type.

A subdivision of the natural convection problem in a rectangular cavity is the case where
one wall is partially/fully heated and the opposite wall is partially/fully cooled while the other
two walls are kept adiabatic. This cavity configuration is of special interest in many
engineering applications, such as solar receivers, solar passive design, and cooling of electronic
equipment. Table I summarizes some of the work available in the literature for this type of
configuration. These types are characterized by the boundary conditions imposed on the walls,
as presented in Table II and Figure 1. Only Oosthuizen and Paul [6] studied the effect of the
cavity tilt angle, while other studies dealt with a vertical cavity. Hasnaoui et al. [7] studied
natural convection in a horizontal cavity partially heated from below (a=90°). All the cases
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Table I. Review of previous work on rectangular cavities where one wall is fully/partially heated and the opposing wall is fully/partially cooled (see
Figure 1)

c2/H a2/H Type* Tilt a (°) Raa1/HReference c1/HH/B

0.1�0.33Kuhn and 0.5 1 A 0 05RaB51051987 1 0.07�0.7
Oosthuizen [17]

0.25�1.0 0.5�0.63 1 A −90�901 1035RaBB105Oosthuizen and 0.51989
Paul [6]

Hasnaoui et al. 0.06�1.0 0.2�0.85 0.5 1 A 90 05RaB55×1061992 1, 2
[7]

1 0.25�0.75 0.25�0.75 0.5 1 B −90�90 3×1035RaH5105Oosthuizen and 1991
Paul [18]

R1 0.5 1 C 016.5 6.4×1055RaB55.3×106Keyhani et al. 1988 R1
[19]

Hadim and 0.1�0.9 0.2 0.1�0.9 0.2 D 0 05RaB51051993 1
Ramot [20]

1Turner and 1/8�1/7 1/8�7/8 E 0 5×1065RaH59×1061980 0.5�2.0 0.5
Flack [8]

0.5 0.2, 0.6, 1.0 E −90�00.5 GrB=105, 1071Present work 4, 2, 1.33 ,1

* See Table II.
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shown in Table I considered the fully cooled wall with partially heated wall, except Turner and
Flack [8] who studied a fully heated, partially cooled cavity (type E). The effect of the height
and position of the heated portion of the wall on the flow pattern and heat transfer inside the
cavity has been studied for cavities with aspect ratios between 0.3 and 16.5, and with Rayleigh
numbers of 5107. The investigators listed in Table I found a significant reduction in heat
transfer rate for the vertical cavity (i.e. a=0°), when the heated portion of the wall moves
away from the wall’s center. On the contrary, tilting the cavity in a positive direction
(counterclockwise) significantly increases the heat transfer rate. Turner and Flack [8] have
predicted the same effect for a fully heated, partially cooled vertical cavity. The rate of heat
transfer is reduced as the cooled portion moves either upwards (towards the top wall) or
downwards (towards the bottom wall).

In the present work, a numerical parametric study of natural convection inside a fully
heated, partially cooled tilted cavity is reported. This problem is of fundamental relevance in
designing solar receivers and nuclear reactor cooling systems. Further applications include
determining thermal losses in shop refrigerators. The fast false implicit transient scheme (FITS)
as described by El-Refaee et al. [9] is modified to solve the 2D derived variables governing
equations. Solutions are obtained for a range of values of the cavity aspect ratio (15AR54),
sink–source ratio (1/4BSRB1) and tilting angle (−90°5a50°) at Rayleigh numbers
Ra=105 and 107. The sink portion is centered at the cooled wall in the present study. In order
to examine the mechanisms of heat and fluid flow inside the cavity, detailed temperature and
flow contours are presented. Figure 2 and Table I present the cavity configuration and the
parametric range of study, respectively.

2. FORMULATION

The governing conservation equations for two-dimensional natural convection flow inside the
cavity shown in Figure 2 are
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Table II. Boundary conditions for different cavity types (see Figure 1)

Boundary conditions on wallsType

3 41 1A 1B 2 2A 2B

a aA TH a a TC NA NA
aTCNANAaaaTHB

a aC P P P TC NA NA
D TH a a TH TC aaTC

NATHE aaaaTCNA

a, adiabatic.
NA, not applicable (the length of the wall diminishes to zero).
P, walls 1, 1A, 1B are divided into isothermal parts at TH and adiabatic parts.
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Figure 1. General geometry of a partially heated/cooled tilted cavity.
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where x and y are Cartesian co-ordinates, u and 6 are the velocity components in these
directions, p is the pressure, T is the temperature and t is the time. The properties r, y, k, cp

and b are assumed to be constant, except for the density variation which is considered only in
the buoyancy force through Buosinesque approximation.

Using the streamfunction vorticity formulation, Equations (1)–(4) are reduced to the
following
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Introducing the following dimensionless quantities
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the dimensionless governing equations become
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The vorticity and energy transport equations may now be rewritten in the following general
form
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where f stands for V or u, and Gf and Sf are as follows
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2.1. The discretization of equations

The above governing equations are uniformly discretized using the control volume ap-
proach. The power law is employed in discretizing the convection and diffusion terms as
described by Patankar [10]. To accelerate the convergence an alternating direction implicit
(ADI) scheme is applied [11]. Allowing the power law (almost exact solution) application
locally in a one-dimensional sense for each sweep in the co-ordinates directions, the ADI
procedure enhances the accuracy of the solution. The resultant discretization equations for
Equation (13) in the x- and y-directions are, respectively, as follows

−ai−1, j
n+1/2f i−1, j

n+1/2+ai, j
n+1/2f i, j

n+1/2−ai+1, j
n+1/2f i+1, j

n+1/2=bn, (15)
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−ai, j−1
n+1 f i, j−1

n+1 +ai, j
n+1f i, j

n+1−ai, j+1
n+1 f i, j+1

n+1 =bn+1/2, (16)

where the subscripts i and j refer to the x- and y-locations of the grid point respectively, and
the superscripts n, n+1/2, n+1 indicate old time, advancing a half time step and advancing
a full time step, respectively. The coefficients of Equations (15) and (16) are expressed as
follows
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Figure 2. Geometry and dimension of the partially cooled tilted cavity.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 477–499 (1998)



NATURAL CONVECTION IN TILTED CAVITIES 483

Figure 3. Dependence of mean Nusselt number on tilt angle for Ra=106; comparison with other solutions and
experimental data.
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The function A(�P �) in Equation (17) is given by the following expression [10]

A(�P �)= [[0, (1−0.1�P �)5]], (20)

where the operator [[a, b ]] indicates the greater of a and b.
To complete the discretization process, the flow kinematics equation (9) is discretized using

the central difference scheme. The final form of the equation becomes
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Figure 4. (a) Flow patterns for partially/fully cooled tilted cavities at Gr=1×105 and AR=1. (b) Flow patterns for
partially/fully cooled tilted cavities at Gr=1×105 and AR=1.33. (c) Flow patterns for partially/fully cooled tilted
cavities at Gr=1×107 and AR=2. (d) Flow patterns for partially/fully cooled tilted cavities at Gr=1×105 and

AR=4.
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Figure 4 (Continued)

The vorticity on the boundaries is computed according to the following expressions

at Y=0 Vi,1=
(−4Ui,2

n+1+Ui,3
n+1)

2DY
, (22b)

at Y=1 Vi,N=
(4Ui, j−1

n+1 −Ui, j−2
n+1 )

2DY
, (22c)

at X=0 Vi, j=
(4V2, j

n+1−V3, j
n+1)

2DX
, (22d)

at X=B/H VM, j=
(−4VM−1, j

n+1 +VM−2, j
n+1 )

2DX
, (22e)

where N and M are the total number of grid points.
In order to solve for the unknowns V and u, the values of Un+1 and Vn+1 must be known.

They are not known, therefore, an iterative procedure is followed. For each iteration, the line
tridiagonal matrix algorithm (see Richtmyer and Morton [12]) solves the linearized equations
sequentially for u and V. The value of (Vi, j

n+1)k is used in solving the kinematics equation which

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 477–499 (1998)
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Figure 4 (Continued)

governs the C distribution. The superscript k refers to the iteration number. The C equation
is solved by successive overrelaxation using the following expression

(Ci, j
n+1)m+1= (1−l)(Ci, j

n+1)m

+
l

2[(DX)2+ (DY)2]
[(DX)2(Ci, j+1

n+1 +Ci, j−1
n+1 )m+ (DY)2(Ci+1, j

n+1 +Ci−1, j
n+1 )m

+ (DXDY)2(Vi, j
n+1)k], (23)

where l is an overrelaxation factor. The following FITS [9] numerical procedure solves the
kinetics and the kinematics of the problem.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 477–499 (1998)
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1. Select a coarse grid. An 11×11 grid is a good start in many cases.
2. Use trial and error procedure to select the corresponding largest possible time step.
3. Assume initial solutions for Un, Vn, un and Vn, or get these values at an earlier time level.
4. As a first trial, assign the values of Un and Vn to Un+1 and Vn+1.
5. Use Un+1 and Vn+1 to calculate un+1 using Equations (15) and (16) with f to stand for

u.
6. Use the values of Un+1, Vn+1 and un+1 to determine Vn+ l from Equations (15) and (16).
7. Solve Equation (21) to determine Cn+1.
8. Determine new values of Un+1 and Un+1 from the values of Cn+1 using central difference

given by Equation (22).
9. Use the new values of Un+1 and Vn+1 to repeat steps 5–8. Check convergence of Vn+1

and un+1, if not converged repeat steps 5–8.
10. Repeat steps 4–9 for advancing time levels until steady state convergence is achieved.
11. Repeat steps 2–10 successively for refined grids.
12. Check the solution grid independence by comparing the results obtained from two

successive grids and repeat step 11 if necessary.

Figure 5. (a) Flow patterns for partially/fully cooled tilted cavities at Gr=1×107 and AR=1. (b) Flow patterns for
partially/fully cooled tilted cavities at Gr=1×107 and AR=1.33. (c) Flow patterns for partially/fully cooled tilted
cavities at Gr=1×107 and AR=2. (d) Flow patterns for partially/fully cooled tilted cavities at Gr=1×107 and

AR=4.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 477–499 (1998)
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Figure 5 (Continued)

3. VALIDATION OF THE COMPUTER CODE

The computer code which employs the FITS algorithm has been validated for natural
convection in a differentially heated tilted square cavity. As seen in Figure 3, the present
predictions for Ra=106 and range in tilt angle (−90°5a50°) are in good agreement with
published data and solutions [13–16].

3.1. Grid refinement

Many numerical experiments of various mesh sizes have been performed using the FITS
algorithm to determine the best compromise between accuracy of the results and minimizing
computer time. Based on these results, a mesh size of 40×40 has been adopted for all the cases
completed in the present study. As shown previously by El-Refaee et al. [9], further increase of
the mesh size did not significantly change the final steady state results for 1055Ra5107. The
steady state solution is assumed to be converged when the variation of the Nusselt number
between two consecutive time steps is B0.1%. Computations were performed on the VAX
9000/420 super-mini (vector processing) computer.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 477–499 (1998)
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Figure 5 (Continued)

4. RESULTS AND DISCUSSION

Solutions are obtained for air (Pr=0.7) at GrH=105 and 107 with cavities (Figure 2) having:
AR=H/B=1, 1.33, 2 and 4; OR=a/H=0.2, 0.6 and 1.0; and a=0°, −30°, −60° and
−90°, where a= −90° represents a tilted cavity with the hot wall facing downward.

4.1. Flow pattern

The flow patterns inside cavities at different values of AR, OR and a are given in Figure
4(a)–(d) and Figure 5(a)–(d) for GrH=105 and 107, respectively. Considering a flow with
GrH=105, AR=1, OR=1 and a=0°, it is evident in Figure 4(a) that the two major inner
vortices control the flow in the cavity. One of these vortices (vortex Vh) is generated by the hot
wall and the other (vortex Vc) is generated by the cold wall. The locations of these two vortices

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 477–499 (1998)
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Figure 6. Effect of AR, OR and a on flow pattern.

are strongly dependent on the values of OR and AR. As a decreases from 0° to −90°, vortex
Vc moves up along the cold wall and vortex Vh moves down along the hot wall. On the other
hand, as OR decreases for a constant a, Vc moves down along the cold wall while the location
of Vh is approximately unaffected. The span between the centers of the vortices Vc and Vh

decrease as AR increases, until the two vortices merge at high values of AR (see Figure
4(a)–(d)).

As Gr increases from 105 to 107 for a vertical fully cooled square cavity (i.e. AR=1, a=0°
and OR=1), the center of vortex Vh moves towards the edge of the hot wall at the top, while

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 477–499 (1998)
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the center of vortex Vc moves towards the edge of the cold wall at the bottom. Therefore, the
flow accelerations near the hot and cold walls are increased and the boundary layers near the
hot and cold walls become thinner with increasing Gr. This mechanism, in turn, increases the
horizontal distance between the centers of the two vortices, and finally the core region becomes
stagnant (see Figure 4(a) Figure 5(a)).

The effect of a on the dynamics of the vortices inside the cavity is almost the same for both
values of Gr (105 and 107). As a decreases from 0° to −90° (clockwise rotation), Vh moves
down along the hot walls whereas Vc moves up along the cold walls (Figure 5(a)). This
behavior in turn reduces the vertical height of the stagnant core. The stagnant core vanishes
when the tilt angle a is decreased below its critical value a* (Figure 5(a)). The critical angle a*
is defined as the tilt angle when Vc moves above Vh.

Figure 7. (a) Isotherm contours for partially/fully cooled tilted cavities at Gr=1×105 and AR=1. (b) Isotherm
contours for partially/fully cooled tilted cavities at Gr=1×105 and AR=1.33. (c) Isotherm contours for partially/
fully cooled tilted cavities at Gr=1×105 and AR=2. (d) Isotherm contours for partially/fully cooled tilted cavities

at Gr=1×105 and AR=4.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 477–499 (1998)
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Figure 7 (Continued)

A significant effect of the sink–source area ratio OR on the dynamics of the vortices is also
predicted in the present work for GrH=107. The effect of decreasing OR restricts the
maximum height that Vc can reach, which is the upper edge of the cold wall. When AR=1,
a stagnant zone forms near the top of the cavity and the vertical height of this zone increases
with the decrease of OR. Moreover, as OR decreases, the stagnant core moves closer to the
lower part of the cavity and its vertical height decreases.

As evident in the figures, the combined contributions of tilting the cavity and decreasing OR
assist in the diminishing of the vertical height of the stagnant core. Therefore, the critical tilt
angle gets closer to the vertical position as OR decreases. In the same time, the aspect ratio AR
increases, and the critical tilt angle (at GrH=107) decreases. Similarly, the vertical height of the
stagnant core at a given tilt angle increases as AR increases. When this distance becomes small
enough, the two vortices merge to form one larger vortex. The same behavior has been
observed earlier for GrH=105.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 477–499 (1998)
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Figure 7 (Continued)

Figure 6 depicts a summary of the effects of changing AR, OR and a on the flow pattern in
the cavity as illustrated above.

4.2. Isotherm contours

The steepest temperature gradient occurs near the hot and cold walls, elsewhere, most of the
fluid in the cavity is stratified (see Figures 7 and 8). With the increase in GrH, the thermal
boundary layers near the heated and cooled walls become thinner, and thus, stratification of
the fluid in the cavities becomes more pronounced. Decreasing OR and/or decreasing the tilt
angle from 0° to −90° encourages stratification. When AR increases, the tendency for
stratification of the cavity fluid diminishes, i.e. vertical cavities with AR=4 have no stratifica-

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 477–499 (1998)
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tion at all (see Figure 7(d)). However, increases in GrH (see Figure 8(d)) diminish this effect.
Also at high AR, stratification takes place at the upper part of the cavity upon decreasing OR.

4.3. Ca6ity a6erage Nusselt number

The local heat transfer coefficient for the convective rate of heat transfer between heated and
cooled walls is defined as follows

h= −
k
B
�du

dX
�

X=0

. (24)

The cavity average Nusselt number is defined by the following expression

N( uB=
h( B
k

= −
1

AR
&

0

1 �du

dX
�

X=0

dY. (25)

Figure 8. (a) Isotherm contours for partially/fully cooled tilted cavities at Gr=1×107 and AR=1. (b) Isotherm
contours for partially/fully cooled tilted cavities at Gr=1×107 and AR=1.33. (c) Isotherm contours for partially/
fully cooled tilted cavities at Gr=1×107 and AR=2. (d) Isotherm contours for partially/fully cooled tilted cavities

at Gr=1×107 and AR=4.
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Figure 8 (Continued)

Figure 9(a,b) show the variation of N( uB at different values of AR and OR for cavities with
GrH=105 and 107, respectively. As shown in the figures, vertical cavities always have higher
N( uB than tilted ones (hot wall facing downward). As the tilt angle a decreases, the buoyancy
effects become stronger and the natural convection from hot to cold wall is suppressed until
a= −90°, when heat transfer from hot to cold wall is carried out fully by conduction, i.e. N( uB

tends to 1.
On the other hand, the value of N( uB decreases with the decrease of OR, since the area of the

heat sink per unit area of the heat source is decreased. This trend is always true regardless of
the value of GrH, AR, or a. However, this effect of OR diminishes as a approaches −90°. In
a horizontal cavity, i.e. as OR is decreased, the resistance to heat conduction from source to
sink is increased, which in turn decreases the average Nusselt number N( uB below unity (see
Figure 9(a) at OR=0.2).
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Figure 8 (Continued)

As expected, the increase of AR decreases the value of N( uB. The reason is obvious: as the
width of the cavity per unit height of the hot wall is decreased, the vertical boundary layers of
the hot and cold walls are in better thermal contact with each other, which reduces the degree
of heating and cooling the hot and cold wall boundary layers, respectively, thus lowering the
overall Nusselt number. Once again, the effect of an increasing AR on N( uB diminishes as a

approaches −90°.
In vertical cavities, a=0°, increasing GrH from 105 to 107 improves the value of N( uB by an

order of three to four times, regardless of the values of OR and AR. Again, this effect becomes
less pronounced as a approaches −90°, when heat is transferred only by pure conduction and
thus the value of GrH has no role in the mechanism of heat transfer.
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5. CONCLUDING REMARKS

The main conclusions that are drawn from the study are

1. The results have shown a significant effect of the geometric parameters of the cavity
(AR, a, OR) on the average Nusselt number. The effect is greater for higher Rayleigh
number. At Ra=107, the average Nusselt number of a vertical fully cooled square cavity
is approximately 350% greater than that at Ra=105.

2. The average Nusselt numbers drop sharply as the tilt angle decreases from 0° to −90° (cavity
heated from the top). However, this drop gets smaller as the source–sink ratio (OR) is
decreased (Figure 9(a)). The slope of the N( uB–a variation is considerably decreased when
a is decreased beyond its critical value a*. The Nusselt number reaches unity for horizontal
cavities (a= −90°) irrespective of the values of the aspect ratio AR, and the source–sink
ratio OR. This may be attributed to the full domination of the conduction process (vanishing
of the good mixing stagnant core) as the tilt angle a decreases to its minimum value.

Figure 9. (a) Dependence of cavity Nusselt number on tilt angle, aspect ratio and opening ratio at Gr=1×105. (b)
Dependence of cavity Nusselt number on tilt angle, aspect ratio and opening ratio at Gr=1×107.
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3. At higher values of aspect ratio (AR=4), the heat transfer rates for all angles tend to
approach unity irrespective of OR as the conduction limit is approached (Figure 7).
However, the effect of AR becomes more significant at smaller values of OR (OR=0.2)
(Figure 9(a,b)).

4. The rate of heat transfer reaches its maximum value when the cavity is vertical with unity
AR and unity OR.

5. The combined effect of aspect ratio and tilt angle on the rate of heat transfer becomes less
significant for cavities with smaller OR.

APPENDIX A. NOMENCLATURE

ai, j coefficient of finite difference equation at point (i, j ) in a grid
function of power lawA

AR aspect ratio, AR=H/B
b right-hand-side of finite difference equation

cavity widthB
specific heat at constant pressurecp

gravitational accelerationg
Gr Grashof number

heat transfer coefficienth
cavity height (characteristic length)H

k thermal conductivity of the fluid in the cavity
OR opening ratio

pressurep
Pr Prandtl number of the fluid in the cavity
Ra Rayleigh number

source term, Equation (13)Sf

timet
temperatureT

u velocity component in x-co-ordinate direction
dimensionless velocity component in x-co-ordinate directionU
velocity component in y-co-ordinate direction6

V dimensionless velocity component in y-co-ordinate direction
x, y Cartesian co-ordinates

dimensionless x-co-ordinate distanceX
dimensionless y-co-ordinate distanceY

Greek letters

cavity tilt anglea

coefficient of thermal expansionb

diffusion coefficient, Equation (13)Gf,
u dimensionless temperature

kinematic diffusivityy

density at reference temperaturero

t dimensionless time
l overrelaxation factor

general dependent variable, Equation (13)f

C dimensionless streamfunction
c streamfunction
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dimensionless velocityV
vorticityv

Subscripts

c cold
hoth

i X-location of a grid point
Y-location of a grid pointj

Superscript

k iteration number for solving V and u equations
iteration number for solving c equationm
time leveln
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